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Abstract. We prove the weak ergodicity of the inhomogeneous Markov process generated
by the generalized transition probability of Tsallis and Stariolo under power-law decay of the
temperature. We thus have a reason to conjecture convergence of the simulated annealing
processes with the generalized transition probability to the minimum of the cost function. An
explicitly solvable example in one dimension is analysed in which the generalized transition
probability leads to a fast convergence of the cost function to the optimal value. We also
investigate how far our arguments depend upon the specific form of the generalized transition
probability proposed by Tsallis and Stariolo. It is shown that a few requirements on analyticity
of the transition probability are sufficient to assure fast convergence in the case of the solvable
model in one dimension.

1. Introduction

Simulated annealing has been a powerful tool for combinatorial optimization problems [1–
4]. To find the minimum of a cost function, one introduces a stochastic process similar to
Monte Carlo simulations in statistical mechanics with a control parameter corresponding to
the temperature to allow the system to escape from local minima. By gradually decreasing
the temperature one searches for increasingly narrower regions in the phase space closer to
the optimal state, eventually reaching the optimal state itself in the infinite-time limit.

A very important factor in such processes is the annealing schedule, or the rate of
decrease of temperature. If one lowers the temperature too quickly, the system may end
up in one of the local minima. On the other hand, a very slow decrease of temperature
would surely bring the system to the true minimum. However, such a slow process is
not useful practically. One therefore has to determine carefully how quickly to decrease
the temperature in simulated annealings. On this problem, Geman and Geman [5] proved
that the decrease of temperature asT = constant/ log t , with the proportionality constant
roughly of the order of the system size, guarantees convergence to the optimal state for a
wide class of combinatorial optimization problems. This inverse-log law is still too slow
for most practical purposes. Nevertheless, this result serves as a mathematical background
for empirical investigations by numerical methods.

There have been a few proposals to accelerate the annealing schedule by modifying
the transition probabilities used in the conventional simulated annealing. Szu and Hartly
[6] pointed out for a problem defined in a continuum space that occasional non-local
samplings significantly improve the performance, leading to an annealing schedule inversely
proportional to timeT = constant/t . This non-local sampling corresponds to a modification
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of the generation probability (or, more precisely, the neighbourhood) to be defined later.
Tsallis and Stariolo [7] proposed to modify the acceptance probability generalizing the
usual Boltzmann form in addition to the generation probability (which they call the visiting
distribution). Numerical investigations show faster convergence to the optimal state by
annealing processes using their generalized transition probability or its modifications [7–9].
Szu and Hartley and Tsallis and Stariolo proved that the modifiedgenerationprobability
assures convergence to the optimal state under a power-law decrease of the temperature as
a function of time. However, there has been no mathematically rigorous argument on the
convergence under the generalizedacceptanceprobability of Tsallis and Stariolo.

We prove in the present paper that the inhomogeneous Markov process generated by the
generalized transition (acceptance) probability of Tsallis and Stariolo satisfies the property
of weak ergodicity under an annealing schedule inversely proportional to the power of time.
Rigorously speaking, weak ergodicity (which roughly means asymptotic independence of
the probability distribution from the initial condition) itself does not immediately guarantee
the convergence to the optimal state. Nevertheless, our result is expected to be close enough
to this final goal because the probability distribution would depend upon the initial condition
if the annealing schedule is not chosen appropriately.

Various definitions are given in the next section. The proof of our main theorem appears
in section 3. An example of fast convergence by the generalized transition probability is
discussed in section 4 for a parameter range not covered by the theorem in section 3. In
section 5 we investigate whether we may further generalize the transition probability in the
case of the simple model discussed in section 4. The final section is devoted to discussions
on the significance of our result.

2. Inhomogeneous Markov chain

Let us first list various definitions to fix notations (see [3, 4] for a general introduction to
inhomogeneous Markov processes used in simulated annealing). We consider a problem of
combinatorial optimization with the space of states denoted byS. The size ofS is finite.
The cost functionE is a real single-valued function onS. We assume that the cost function
is not a constant. The goal of a combinatorial optimization problem is to find the minimum
(or minima) of the cost function. For this purpose we introduce the process of simulated
annealing using the Markov chain generated by thetransition probabilityfrom statex(∈ S)
to statey(∈ S) at time stept :

G(x, y; t) =

P(x, y)A(x, y; T (t)) (x 6= y)
1−

∑
z(6=x)

P (x, z)A(x, z; T (t)) (x = y) (2.1)

whereP(x, y) is thegeneration probability

P(x, y)

{
> 0 (y ∈ Sx)
= 0 (otherwise)

(2.2)

with Sx the neighbourhoodof x (the set of states that can be reached by a single step from
x), andA(x, y; T ) is the acceptance probability. In the case of the generalized transition
probability, the acceptance probability is given as [7]

A(x, y; T ) = min{1, u(x, y; T )}

u(x, y; T ) =
(

1+ (q − 1)
E(y)− E(x)

T

)1/(1−q)
(2.3)
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where q is a real parameter. For technical reasons we have to restrict ourselves to the
regionq > 1 in this and the next sections. This acceptance probability reduces to the usual
Boltzmann form in the limitq → 1. The present Markov chain isinhomogeneous, i.e. the
transition probability (2.1) depends on the time stept through the time dependence ofT (t).

We choose theannealing schedule, or the t dependence of the parameterT (the
temperature), as

T (t) = b

(t + 2)c
(b, c > 0, t = 0, 1, 2, . . .). (2.4)

To analyse the inhomogeneous Markov chain generated by the above transition
probability, we introduce thetransition matrixG(t) with the element

[G(t)]x,y = G(x, y; t). (2.5)

Let us write the set of probability distributions onS as P. A probability distribution
p(∈ P) may be regarded as a row vector with the component [p]x = p(x)(x ∈ S). Using
this matrix-vector notation, the probability distribution at time stept , starting from an initial
distributionp0(∈ P) at times, is written as

p(s, t) = p0G
s,t ≡ p0G(s)G(s + 1) · · ·G(t − 1). (2.6)

The coefficient of ergodicityis defined as

α(G) = 1−min

{∑
z∈S

min{G(x, z),G(y, z)}|x, y ∈ S
}

(2.7)

which is a measure of the change of states by a single step.
We shall prove in the next section the property ofweak ergodicityfor the present

Markov chain, which means that the probability distribution function after sufficiently long
time becomes independent of the initial condition

∀s > 0 : lim
t→∞ sup{‖p1(s, t)− p2(s, t)‖ | p01, p02 ∈ P} = 0 (2.8)

wherep1(s, t) andp2(s, t) are the probability distributions with different initial conditions
p01 andp02:

p1(s, t) = p01G
s,t (2.9)

p2(s, t) = p02G
s,t . (2.10)

The norm is defined by

‖p1− p2‖ =
∑
x∈S
|p1(x)− p2(x)|. (2.11)

Although we focus our attention on weak ergodicity in the present paper, it may be useful
as a reference to recall the definition ofstrong ergodicity:

∃r ∈ P, ∀s > 0 : lim
t→∞ sup{‖p(s, t)− r‖ | p0 ∈ P} = 0. (2.12)

The following theorems give criteria for weak and strong ergodicity [3, 4]:

Theorem 1 (Condition for weak ergodicity).An inhomogeneous Markov chain is weakly
ergodic if and only if there exists a strictly increasing sequence of positive numbers

t0 < t1 < · · · < ti < ti+1 < · · ·
such that

∞∑
i=0

(1− α(Gti ,ti+1)) = ∞. (2.13)
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Theorem 2 (Condition for strong ergodicity).An inhomogeneous Markov chain is strongly
ergodic if it satisfies the following conditions:

(i) it is weakly ergodic
(ii) there existspt ∈ P(∀t > 0) such thatpt = ptG(t)
(iii) pt satisfies

∞∑
t=0

‖pt − pt+1‖ <∞. (2.14)

3. Weak ergodicity

We prove in the present section that the condition in theorem 1 is satisfied by the present
inhomogeneous Markov chain generated by the generalized transition probability. The
argument closely follows that for the conventional Boltzmann-type transition probability
[3–5]. We need the following Lemma for this purpose.

Lemma 1 (Lower bound on the transition probability.).The elements of the transition
matrix of the inhomogeneous Markov chain defined in section 2 satisfy the following bounds.
For off-diagonal elements,

P(x, y) > 0 ⇒ ∀t > 0 :G(x, y; t) > w
(

1+ (q − 1)L

T (t)

)1/(1−q)
(3.1)

and for diagonal elements,

∀x ∈ S − SM, ∃t1 > 0, ∀t > t1 : G(x, x; t) > w
(

1+ (q − 1)L

T (t)

)1/(1−q)
(3.2)

whereSM is the set of locally maximum states

SM = {x | x ∈ S, ∀y ∈ Sx : E(y) 6 E(x)} (3.3)

andL denotes the maximum change of the cost function by a single step

L = max{|E(x)− E(y)| | P(x, y) > 0} (3.4)

andw is the minimum value ofP(x, y)

w = min{P(x, y) | P(x, y) > 0, x, y ∈ S}. (3.5)

Proof. First we prove (3.1). WhenE(y)−E(x) > 0, we haveu(x, y; T (t)) 6 1 and thus

G(x, y; t) = P(x, y)A(x, y; T (t))
> w min{1, u(x, y; T (t))}
= w u(x, y; T (t))

> w
(

1+ (q − 1)L

T (t)

)1/(1−q)
. (3.6)

If E(y)− E(x) 6 0, u(x, y; T (t)) > 1 and therefore

G(x, y; t) > w min{1, u(x, y; T (t))}
= w
> w

(
1+ (q − 1)L

T (t)

)1/(1−q)
. (3.7)
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We next prove (3.2). Sincex ∈ S − SM , there exist statesy+ ∈ Sx satisfying
E(y+)− E(x) > 0. For such statesy+,

lim
t→∞ u(x, y+; T (t)) = 0 (3.8)

and consequently

lim
t→∞min{1, u(x, y+; T (t))} = 0. (3.9)

Then min{1, u(x, y+; T (t))} can be made arbitrarily small for sufficiently larget . More
precisely, there existt1 > 0 and 0< ε < 1 such that

∀t > t1 : min{1, u(x, y+; T (t))} < ε. (3.10)

We therefore have∑
z∈S

P(x, z)A(x, z; T (t)) =
∑
{y+}

P(x, y+)min{1, u(x, y+; T (t))}

+
∑

z∈S−{y+}
P(x, z)min{1, u(x, z; T (t))} <

∑
{y+}

P(x, y+)ε

+
∑

z∈S−{y+}
P(x, z) = −(1− ε)

∑
{y+}

P(x, y+)+ 1. (3.11)

The diagonal element of (2.1) thus satisfies

G(x, x; t) > (1− ε)
∑
{y+}

P(x, y+)

> w
(

1+ (q − 1)L

T (t)

)1/(1−q)
(3.12)

where we have used that the last factor can be made arbitrarily small for sufficiently large
t . �

We use the following notations in the proof of weak ergodicity. The minimum number
of state transitions to reachy from x (or vice versa) is written asd(x, y). One can then
reach any state fromx within k(x) steps:

k(x) = max{d(x, y) | y ∈ S}. (3.13)

The minimum ofk(x) for x ∈ S − SM is denoted asR, and the state giving this minimum
value isx∗:

R = min{k(x) | x ∈ S − SM} (3.14)

x∗ = arg min{k(x) | x ∈ S − SM}. (3.15)

Theorem 3 (Weak ergodicity).The inhomogeneous Markov chain defined in section 2 is
weakly ergodic if 0< c 6 (q − 1)/R.

Proof. Consider a transition from statex to x∗. According to the definition (2.6) of the
double-time transition matrix, we have

Gt−R,t (x, x∗) =
∑

x1,···,xR−1

G(x, x1; t − R)G(x1, x2; t − R + 1) · · ·G(xR−1, x
∗; t − 1).

(3.16)



5666 H Nishimori and J Inoue

From the definitions ofx∗ andR, there exists at least one sequence of transitions to reach
x∗ from x within R steps such that

x 6= x1 6= x2 6= · · · 6= xk = xk+1 · · · = xR = x∗. (3.17)

If we keep only such a sequence in the summation of (3.16) and use lemma 1,

Gt−R,t (x, x∗) > G(x, x1; t − R)G(x1, x2; t − R + 1) · · ·G(xR−1, xR; t − 1)

>
R∏
k=1

w

(
1+ (q − 1)L

T (t − R + k − 1)

)1/(1−q)

> wR
(

1+ (q − 1)L

T (t − 1)

)R/(1−q)
. (3.18)

Then the coefficient of ergodicity satisfies

α(Gt−R,t ) = 1−min

{∑
z∈S

min{Gt−R,t (x, z),Gt−R,t (y, z)} | x, y ∈ S
}

6 1−min{min{Gt−R,t (x, x∗),Gt−R,t (y, x∗)} | x, y ∈ S}

6 1− wR
(

1+ (q − 1)L

T (t − 1)

)R/(1−q)
. (3.19)

We now use the annealing schedule (2.4). There exists a non-negative integerk0 such that
the following inequalities hold for allk > k0:

1− α(GkR−R,kR) > wR
(

1+ (q − 1)L(kR + 1)c

b

)R/(1−q)
> wR

(
2(q − 1)LRc

b

(
k + 1

R

)c)R/(1−q)
. (3.20)

It is clear from (3.20) that the summation

∞∑
k=0

(1− α(GkR−R,kR)) =
k0−1∑
k=0

(1− α(GkR−R,kR))+
∞∑
k=k0

(1− α(GkR−R,kR)) (3.21)

diverges if c satisfies 0< c 6 (q − 1)/R. This proves weak ergodicity according to
theorem 1. �

Remark 1. The arguments developed in sections 2 and 3 break down forq < 1. For
instance, the argument of the outer parentheses on the right-hand side of (2.3) becomes
negative for sufficiently smallT if E(y) − E(x) > 0 and q < 1. The acceptance
probability is regarded as vanishing in such a case in numerical calculations [7, 8]. However,
it is difficult to modify the present proof to adopt this convention used in numerical
investigations. Theorem 3 does not exclude the possibility that the present Markov chain is
weakly ergodic forq < 1 or that it is strongly ergodic for arbitraryq.

Remark 2. The condition for weak ergodicity given in theorem 1 is similar to the condition
of ‘infinite often in time’ used to show convergence under the generalized generation
probability in continuum space [6, 7].
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Remark 3. Theorem 3 with the annealing schedule (2.4) does not immediately mean a
fast convergence of the expectation value of the cost function. We have proved only the
convergence in the sense of weak ergodicity, not afastconvergence of the expectation value
of the cost function. See section 6 for detailed discussions on this point.

4. Case ofq < 1

It is instructive to investigate a simple solvable model with the parameterq < 1 because the
general analysis in the previous section excluded this range ofq for technical reasons. The
one-dimensional model discussed by Shinomoto and Kabashima [10] is particularly suited
for this purpose.

They considered the thermal diffusion process of an object in a one-dimensional space.
The object is located on one of the discrete positionsx = ai, with i an integer, and is under
the potentialE(x) = x2/2. Hoppings to neighbouring positionsi+1 andi−1 take place if
thermal fluctuations allow the object to climb over the barriers with heightB for the process
i → i − 1 and heightB + 1i for i → i + 1, where1i is the difference of the potentials
at neighbouring locations1i = E (a(i + 1))− E(ai) = ax + a2/2. A point to notice here
is that the potential barriers are not symmetric around a given point; it has a fixed valueB

to the left and a position-dependent valueB + 1i to the right. The latter barrier may be
larger or smaller than the former depending upon the positionx of the object. Nevertheless,
since we will take the continuum limita→ 0 with fixedx, the difference between the two
barriers,1i , becomes very small compared to the fixed valueB.

By adaptively optimizing the temperature at each given time, Shinomoto and Kabashima
found that the energy (the expectation value of the potential at the position of the object)
decreases asB/ log t . The optimum annealing scheduleTopt(t) was shown to have this same
asymptotic behaviour as a function oft . We show in the present section that the generalized
transition probability withq = 1

2 leads to a much faster convergence of the energy.
It should be noted that the analysis of the present section is not an application of the

general theorem in the previous section. For example,q is less than 1 here, the number
of possible states is not finite (i runs from−∞ to∞), and the optimal annealing schedule
will turn out to bet−1, not t−c. The purpose of the present section is to show the existence
of a case, independently of theorem 3, where the generalized transition probability yields a
much faster decrease of the temperature and energy.

The problem is defined by the master equation describing the time evolution of the
probabilityPi that the object is at theith position at timet :

dPi
dt
=
(

1+ (q − 1)
B

T

)1/(1−q)
Pi+1+

(
1+ (q − 1)

B +1i−1

T

)1/(1−q)
Pi−1

−
(

1+ (q − 1)
B +1i

T

)1/(1−q)
Pi −

(
1+ (q − 1)

B

T

)1/(1−q)
Pi. (4.1)

We now assume thatq satisfiesq = 1− (2n)−1 (n = 1, 2, 3, . . .) so that 1/(1− q) in
the above expression is an even number, which assures that the transition probabilities are
positive semi-definite at any temperature.
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It is straightforward to show that this master equation reduces to the following Fokker–
Planck equation in the continuum limita→ 0

∂P

∂t
= γ (T ) ∂

∂x
(xP )+D(T )∂

2P

∂x2
(4.2)

where

γ (T ) = 1

T

(
1+ (q − 1)

B

T

)q/(1−q)
(4.3)

D(T ) =
(

1+ (q − 1)
B

T

)1/(1−q)
. (4.4)

We have rescaled the time unit by 1/a2 as in [10].
Our aim is to find the fastest possible asymptotic decrease of the expectation value of

the potential defined by

y =
∫

dx E(x) P (x, t) (4.5)

by adaptively changingT as a function of time. Differentiating both sides of the definition
(4.5) and using the Fokker–Planck equation (4.2), we obtain the following equation
describing the time evolution ofy:

dy

dt
= −2γ (T ) y +D(T ). (4.6)

The temperature is adaptively optimized by extremizing this right-hand side with respect to
T , yielding

Topt = 2yB + (1− q)B2

2y + B
= (1− q)B + 2qy +O(y2). (4.7)

The evolution equation (4.6) then has the asymptotic form

dy

dt
= − 2

B

(
2q

1− q
)q/(1−q)

y1/(1−q). (4.8)

The solution is

y = Bq/(1−q)
(

1− q
2q

)1/q

t−(1−q)/q . (4.9)

The optimum annealing schedule (4.7) is now

Topt ∼ (1− q)B + constant× t−(1−q)/q . (4.10)

The asymptotic behaviour of the average position can be calculated in the same way. The
result is

〈x〉 =
∫

dx xP (x, t)

∼ constant× t−1/2q . (4.11)

From (4.9) we see that the fastest decrease of the energy is achieved whenq = 1
2. With

this value ofq,

y ∼ 1
4B t

−1 (4.12)

Topt ∼ 1
2B + 1

4B t
−1 (4.13)

〈x〉 ∼ constant× t−1. (4.14)



Convergence of simulated annealing 5669

It may be useful to remark that the non-vanishing value(1− q)B of the temperature
(4.10) in the infinite-time limit does not cause troubles. What is required is not an
asymptotically vanishing value of the temperature, but that the probability distribution does
not change with time in the infinite-time limit. This condition is satisfied ifT = (1− q)B
as is apparent from (4.2) with (4.3) and (4.4).

The results (4.12) and (4.13) show asymptotic relaxations proportional tot−1 which is
much faster than those for the conventional transition probability,B/ log t [10]. This result
of course depends upon the specific structure of the one-dimensional model. We are not
claiming to have shown that the generalized transition probability withq < 1 always gives
a faster decrease of the temperature and energy.

5. More general transition probability

A natural question may arise on how far the arguments in the previous sections depend on
the specific form of the acceptance probability (2.3). We investigate this problem for the
one-dimensional model treated in the preceding section.

The master equation is now generalized to

dPi
dt
= f

(
B

T

)
Pi+1+ f

(
B +1i−1

T

)
Pi−1− f

(
B +1i

T

)
Pi − f

(
B

T

)
Pi. (5.1)

The same Fokker–Planck equation (4.2) is derived in the limita → 0 with the following
parameters:

γ (T ) = − 1

T 2
f ′
(
B

T

)
(5.2)

D(T ) = f
(
B

T

)
. (5.3)

The expectation value of the potential obeys the same evolution equation as in (4.6):

dy

dt
= −2γ (T ) y +D(T ) = 2y

T
f ′
(
B

T

)
+ f

(
B

T

)
≡ L

(
1

T

)
. (5.4)

Minimization of L(v)(v = 1/T ) with respect toT for given y leads to

2vyB f ′′(Bv)+ (2y + B) f ′(Bv) = 0. (5.5)

The solution of this equation forv gives the optimal annealing schedule

1

Topt
= v = g(y). (5.6)

Assuming analyticity ofg(y) asy → 0, we write (5.6) as

v = c1+ c2y +O(y2). (5.7)

It is required that the system stops its time evolution asy → 0 andv→ c1. We then have
f (Bc1) = 0 from (5.4) assumingc1 is finite. (This condition ofc1 <∞ is not satisfied by
the conventional Boltzmann-type acceptance probability in which 1/v = T → 0 (c1→∞)
as y → 0.) It is also necessary that the minimization condition (5.5) is satisfied in the
same limit, leading tof ′(Bc1) = 0. These two conditions onf and f ′ are satisfied if
f (Bv) (= f (Bc1+ Bc2y)) and its derivative behave for smally as

f (Bv) ∼ c3y
k f ′(Bv) ∼ −c4y

k−1 (5.8)
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wherek > 1 andc3, c4 > 0. The minus sign in front ofc4 comes from the observation
that an increase of the inverse temperaturev = 1/T means a decrease of the energyy and
therefore the differentiations byv andy should be done with the opposite sign (i.e.c2 < 0).

The evolution equation (5.4) then has a form

dy

dt
= −c5y

k (5.9)

with positivec5 if 2c1c4 > c3. This equation is solved as

y = (c5(k − 1)t)−1/(k−1) (5.10)

which shows a power decay of the expectation value of the cost function.
It is useful to set a restriction onk as in the preceding section forq. The following

acceptance probability fory → 0 should be positive for anyx:

f

(
B +1i−1

T

)
∼ f (Bc1+ Bc11i−1) ∼

(
1
2a

2− ax)k (5.11)

where we have used (5.8). This requirement is satisfied ifk is a positive even number
k = 2n. The energy (5.10) then decays as

y ∼ t−1, t−1/3, t−1/5, . . . , (5.12)

the same formula as in the preceding section. In fact the argument in section 4 is recovered
if we choose

f (v) = (1+ (q − 1)v)1/(1−q) . (5.13)

In this way the fast decrease of the energy has been obtained for a very general
acceptance probability distribution function satisfying certain analyticity conditions.

6. Discussions

We have proved weak ergodicity of the inhomogeneous Markov process generated by the
generalized transition probability under certain conditions on the parameters. For technical
reasons we were unable to prove strong ergodicity, or more strongly, convergence to the
optimal distribution function. We could not show that the condition (2.14) of theorem 2
is satisfied by the present inhomogenous Markov chain. However, weak ergodicity alone
already means that asymptotically the state of the system becomes independent of the initial
condition, and it is most likely that such an asymptotic state is the optimal one as mentioned
in section 1.

It may useful to discuss how the parameterc appearing in equation (2.4) and theorem 3
depends upon the structure of the problem by taking the example of a ‘golf-course-like’
energy landscape where there are large flat parts and very narrow regions of low-energy
states. The quantityR defined in equation (3.14) may be large in the ‘golf-course-like’
landscape because the number of elements in the setS − SM is small and thus the chance
to find smallerk(x) is limited. Nevertheless,R is still finite and it is possible to find a path
mentioned in equation (3.17). For largeR, c will be small as is seen in the inequality in
the statement of theorem 3. This leads to a slower convergence according to the annealing
scheduleT ∼ 1/(t+2)c. Thus, as one would expect naively, the rate of convergence slows
down in such a case although the convergence itself is assured.

Intuitively, if there is a large flat portion in the energy landscape, the particle under
stochastic motion will be migrating around in that region for some extended time. The
particle, however, will eventually (within a finite amount of time) hit a region with a lower
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energy and will move into that region if the annealing schedule is chosen appropriately as
stated in theorem 3. If the lowest-energy state also has a flat structure in the energy landscape
(the ground-state degeneracy), the particle may continue to follow a free random walk there.
This does not cause a problem because the weak ergodicity claims convergence of the
probability distribution: the probability distributionP in the above situation isP = 1/K,
whereK is the number of states (degeneracy) in the ground state. In other words, the
probability distribution has converged into the uniform distribution over the ground state
even though the actual motion of the particle continues.

Let us also comment on computational complexity. The timet1 necessary for the
temperature (2.4) to reach a small specified valueδ is obtained by solving the relation
b/tc1 ∼ δ (c = (q − 1)/R) for t1:

t1 ∼ exp

(
k1N

q − 1
log

b

δ

)
. (6.1)

Here we have setR = k1N with N the system size becauseR defined in (3.14) is roughly
of this order of magnitude in many cases. For example, in the problem of spin glasses, one
can reach any spin configuration by flipping at mostN spins. The corresponding time for
the conventional simulated annealing is

t2 ∼ exp

(
k2N

δ

)
(6.2)

which has been obtained fromk2N/ log t2 ∼ δ. A comparison of (6.1) with (6.2) reveals
that the coefficient ofN in the exponent has been reduced from 1/δ to log 1/δ by using
the generalized transition probability. In this sense,t1 � t2. Since we have proved
theorem 3 under very general conditions on the system (which would include problems
with NP completeness), it is not possible to find an algorithm to reach a low-temperature
state in polynomial time. The best we could achieve is an improvement of the coefficient
in the exponent.

One should be careful that the rapid decrease of the temperature does not immediately
mean a rapid decrease of the cost function. This aspect can be checked by comparing the
acceptance probability (2.3) atT = δ

u1(T = δ) ∼
(

δ

(q − 1)1E

)1/(q−1)

(6.3)

with the corresponding one for the conventional transition

u2(T = δ) ∼ exp(−1E/δ). (6.4)

Sinceu1(δ) � u2(δ) if 1E/δ � 1, we see that the generalized transition probability at a
given temperature has a larger value to induce transitions into states with high values of
the cost function than in the case of the conventional one at the same temperature. Thus
the expectation value of the cost function may be larger under the generalized transition
probability than under the conventional Boltzmann form at the same temperature if one
waits sufficiently long until thermal equilibrium is reached. This phenomenon has actually
been observed in a numerical investigation under a slightly different (but essentially similar)
situation [9].

Therefore, if the expectation value of the cost function is observed in a numerical
simulation to indeed decrease rapidly under the generalized transition probability, it would
be due to not only the rapid decrease of the temperature but also because the relaxation
time is shorter. The conventional transition probability may give a larger possibility for the
system to stay longer in local minima with high values of the cost function. A mathematical
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analysis of this property of quick relaxation by the generalized transition probability is
beyond the scope of the present paper. However, one may naively expect it to arise from
the larger probability of climbing over high barriers as discussed above.

It should be remarked that theorem 3 with the annealing schedule (2.4) does not give
a practically useful prescription of simulated annealing. In actual numerical simulations
one rarely uses such annealing schedules as (2.4) obtained from worst-case estimates. Even
exponentially fast decreases of temperature often give satisfactory results in the conventional
and generalized methods (see [8] and references in [7]). The significance of theorem 3
is that convergence (in the sense of weak ergodicity) as has also been proved with the
annealing schedule (2.4) under the generalized transition (acceptance) probability where only
empirical numerical investigations have been carried out without a mathematical guarantee
of convergence under any annealing schedule.
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